Pomoc investorům
Invest mentoring
Odebírat Ranního Bullionáře
Podcast
Burzovnisvet Logo
  • Headlines
    • Breaking
    • Bullionář Daily
    • Akcie
    • Hospodářské výsledky
    • ETF
    • Dividendy
    • IPO
    • Forex
    • Komodity
    • Kryptoměny
    • Ekonomika
  • Příležitost
  • IPO Radar

    Nadcházející IPO.

    Zdroj: Burzovnísvět.cz
    YSS 29 ledna, 2026

    Americká společnost specializující se na výrobu nákladově efektivních satelitů

    TBA Bude oznámeno

    Americká platforma pro nákup a prodej vstupenek na sportovní a kulturní akce

    TBA Bude oznámeno

    Komunikační platforma zaměřeá na hlasovou, video a textovou komunikaci

    BTGO Bude oznámeno

    Americká společnost specializující se na bezpečné úschovy kryptoměn

    Minulé IPO.

    TBA 23 ledna, 2026

    Česká zbrojařská skupina zaměřená na výrobu obrněné techniky a munice

    603986.SS 13 ledna, 2026

    Polovodičová společnost, která navrhuje specializované čipy pro IoT a průmysl

    9903.HK 8 ledna, 2026

    Technologická společnost, která vyvíjí obecné GPU čipy a řešení pro AI

    6082.HK 31 prosince, 2025

    Technologická společnost, která vyvíjí vysokovýkonná GPU pro AI

  • Úspěch
    • Alternativní investice
    • Škola bullionáře
    • Miliardáři
    • Business
    • Bullionářova knihspirace
    • Bullionářův almanach
    • Bullionářův slovníček
  • AI
  • Česko
  • E-booky
  • Srovnávač brokerů
  • Kariéra
  • Login
Burzovnisvet.cz - Akcie, kurzy, burza, forex, komodity, IPO, dluhopisy - zpravodajství
  • Headlines
    • Breaking
    • Bullionář Daily
    • Akcie
    • Hospodářské výsledky
    • ETF
    • Dividendy
    • IPO
    • Forex
    • Komodity
    • Kryptoměny
    • Ekonomika
  • Příležitost
  • IPO Radar

    Nadcházející IPO.

    Zdroj: Burzovnísvět.cz
    YSS 29 ledna, 2026

    Americká společnost specializující se na výrobu nákladově efektivních satelitů

    TBA Bude oznámeno

    Americká platforma pro nákup a prodej vstupenek na sportovní a kulturní akce

    TBA Bude oznámeno

    Komunikační platforma zaměřeá na hlasovou, video a textovou komunikaci

    BTGO Bude oznámeno

    Americká společnost specializující se na bezpečné úschovy kryptoměn

    Minulé IPO.

    TBA 23 ledna, 2026

    Česká zbrojařská skupina zaměřená na výrobu obrněné techniky a munice

    603986.SS 13 ledna, 2026

    Polovodičová společnost, která navrhuje specializované čipy pro IoT a průmysl

    9903.HK 8 ledna, 2026

    Technologická společnost, která vyvíjí obecné GPU čipy a řešení pro AI

    6082.HK 31 prosince, 2025

    Technologická společnost, která vyvíjí vysokovýkonná GPU pro AI

  • Úspěch
    • Alternativní investice
    • Škola bullionáře
    • Miliardáři
    • Business
    • Bullionářova knihspirace
    • Bullionářův almanach
    • Bullionářův slovníček
  • AI
  • Česko
  • E-booky
  • Srovnávač brokerů
  • Kariéra
    • Žádný výsledek
      Zobrazit všechny výsledky
BS Logo

Syntetická data mění vývoj AI, ale přinášejí i zásadní výzvy

Je možné, aby umělá inteligence byla vyškolena výhradně na datech vytvořených jinými modely AI?

Michael Klos Autor: Michael Klos
25 prosince, 2024
5 min. čtení
Zdroj: Getty images

Zdroj: Getty images

5 min.
čtení
Přihlaste se k odběru newsletteru
Chcete využít této příležitosti?

Klíčové body

  • Syntetická data nabízí řešení rostoucího nedostatku tréninkových dat pro AI
  • Generovaná data umožňují rychlejší a levnější vývoj modelů, ale nesou riziko chyb
  • Budoucnost umělé inteligence závisí na pečlivé kontrole kvality dat a vyváženém přístupu

Tato myšlenka, která zní futuristicky, se postupně stává realitou.

Vzhledem k obtížím spojeným se získáváním a označováním kvalitních reálných dat se syntetická data jeví jako lákavé řešení. Přesto jejich používání přináší nejen příslib, ale i rizika.

Význam dat a anotací

Systémy AI jsou postaveny na schopnosti rozpoznávat vzorce v datech. Aby modely AI mohly efektivně fungovat, potřebují rozsáhlé tréninkové sady obsahující příklady, které modelu ukážou, jak reagovat na různé podněty.

Důležitou roli zde hrají anotace – popisy nebo označení, která definují význam dat. Například v systému, který klasifikuje fotografie, může anotace „kuchyně“ pomoci modelu identifikovat typické prvky této místnosti, jako jsou lednice či pracovní desky.

Advertisement
Zdroj: Getty images

Proces anotace dat je však náročný a drahý. Lidské chyby, předsudky a omezené kapacity anotátorů zvyšují náklady i riziko nepřesností. Navíc s rostoucím objemem dat, která jsou potřebná pro trénink moderních modelů, se tato situace stává neudržitelnou.

Chcete využít této příležitosti?

Klesající dostupnost reálných dat

Kromě nákladů na anotaci čelí vývojáři AI i dalším výzvám. Mnoho veřejných dat, která byla dříve volně dostupná, je nyní blokováno jejich vlastníky. Strach z plagiátorství nebo nedostatečného uznání vede k tomu, že přístup k těmto datům je stále více omezen. Výzkumy ukazují, že přibližně 35 % z 1 000 nejnavštěvovanějších webů na světě blokuje nástroje pro sběr dat, a tento podíl stále roste.

Pokud bude tento trend pokračovat, vývojáři by mohli čelit nedostatku kvalitních tréninkových dat již v příštích několika letech. Skupina Epoch AI odhaduje, že zásoby dat vhodných pro trénink generativních modelů by mohly být vyčerpány mezi lety 2026 a 2032.

Syntetická data, vytvořená jinými modely AI, se prezentují jako řešení těchto problémů. Mohou být generována v neomezeném množství a přizpůsobena specifickým potřebám vývojářů. Tento přístup umožňuje nejen ušetřit náklady, ale také eliminovat některé lidské chyby spojené s procesem anotace.

Například společnost Writer nedávno představila model vycvičený téměř výhradně na syntetických datech za zlomek nákladů, které by vyžadovala tradiční tréninková data. Podobně společnosti Microsoft, Google a další již aktivně využívají syntetická data k vylepšování svých modelů.

Rizika a omezení syntetických dat

Navzdory svým výhodám nejsou syntetická data bez problémů. Základní pravidlo „garbage in, garbage out“ platí i zde. Pokud jsou modely, které syntetická data generují, vycvičeny na chybných nebo neúplných datech, budou výsledná syntetická data trpět stejnými nedostatky. Například špatná reprezentace některých skupin v původních datech povede k jejich nedostatečnému zastoupení i v syntetických datech.

Studie z roku 2023 ukázala, že přílišné spoléhání na syntetická data může vést ke zhoršování kvality modelů. S každou další generací tréninku na syntetických datech se modely stávají méně rozmanitými a jejich schopnost přesně reagovat na složitější podněty klesá.

Dalším rizikem je tzv. halucinace modelů – situace, kdy model generuje zcela nepravdivé nebo nesmyslné informace. Tyto chyby se mohou stát součástí syntetických dat a dále ovlivňovat kvalitu trénovaných modelů.

Budoucnost syntetických dat

Přestože syntetická data přinášejí mnoho výhod, stále nejsou schopna zcela nahradit data reálná. Nejlepší výsledky zatím přináší kombinace obou přístupů, kdy syntetická data doplňují tréninkové sady obsahující reálná data. Tento přístup umožňuje dosáhnout vyšší rozmanitosti i přesnosti modelů.

Zdroj: Getty images

Ačkoli někteří odborníci předpovídají, že syntetická data se jednou stanou hlavním zdrojem pro trénink AI, tato technologie zatím nedosáhla potřebné úrovně. Vývojáři budou muset pokračovat v hledání rovnováhy mezi využíváním syntetických dat a spolehnutím se na lidský dohled a reálné zdroje.

Syntetická data představují slibnou cestu pro budoucí vývoj umělé inteligence. Nabízejí řešení problémů spojených s nedostatkem reálných dat, snižují náklady a urychlují proces tréninku. Současně však přinášejí rizika, která je třeba pečlivě zvažovat.

Aby se vývojáři vyhnuli problémům, musí syntetická data důkladně kontrolovat a doplňovat je daty z reálného světa. Tato kombinace zajistí, že modely AI budou schopny nejen přesně reagovat, ale také se adaptovat na komplexní a měnící se podmínky. V konečném důsledku tak syntetická data mohou hrát klíčovou roli při formování budoucnosti umělé inteligence.

Je možné, aby umělá inteligence byla vyškolena výhradně na datech vytvořených jinými modely AI? Tato myšlenka, která zní futuristicky, se postupně stává realitou. Vzhledem k obtížím spojeným se získáváním a označováním kvalitních reálných dat se syntetická data jeví jako lákavé řešení. Přesto jejich používání přináší nejen příslib, ale i rizika. Význam dat a anotací Systémy AI jsou postaveny na schopnosti rozpoznávat vzorce v datech. Aby modely AI mohly efektivně fungovat, potřebují rozsáhlé tréninkové sady obsahující příklady, které modelu ukážou, jak reagovat na různé podněty. Důležitou roli zde hrají anotace – popisy nebo označení, která definují význam dat. Například v systému, který klasifikuje fotografie, může anotace „kuchyně“ pomoci modelu identifikovat typické prvky této místnosti, jako jsou lednice či pracovní desky. Zdroj: Getty images Proces anotace dat je však náročný a drahý. Lidské chyby, předsudky a omezené kapacity anotátorů zvyšují náklady i riziko nepřesností. Navíc s rostoucím objemem dat, která jsou potřebná pro trénink moderních modelů, se tato situace stává neudržitelnou. Klesající dostupnost reálných dat Kromě nákladů na anotaci čelí vývojáři AI i dalším výzvám. Mnoho veřejných dat, která byla dříve volně dostupná, je nyní blokováno jejich vlastníky. Strach z plagiátorství nebo nedostatečného uznání vede k tomu, že přístup k těmto datům je stále více omezen. Výzkumy ukazují, že přibližně 35 % z 1 000 nejnavštěvovanějších webů na světě blokuje nástroje pro sběr dat, a tento podíl stále roste. Pokud bude tento trend pokračovat, vývojáři by mohli čelit nedostatku kvalitních tréninkových dat již v příštích několika letech. Skupina Epoch AI odhaduje, že zásoby dat vhodných pro trénink generativních modelů by mohly být vyčerpány mezi lety 2026 a 2032. Syntetická data, vytvořená jinými modely AI, se prezentují jako řešení těchto problémů. Mohou být generována v neomezeném množství a přizpůsobena specifickým potřebám vývojářů. Tento přístup umožňuje nejen ušetřit náklady, ale také eliminovat některé lidské chyby spojené s procesem anotace. Například společnost Writer nedávno představila model vycvičený téměř výhradně na syntetických datech za zlomek nákladů, které by vyžadovala tradiční tréninková data. Podobně společnosti Microsoft, Google a další již aktivně využívají syntetická data k vylepšování svých modelů. Rizika a omezení syntetických dat Navzdory svým výhodám nejsou syntetická data bez problémů. Základní pravidlo „garbage in, garbage out“ platí i zde. Pokud jsou modely, které syntetická data generují, vycvičeny na chybných nebo neúplných datech, budou výsledná syntetická data trpět stejnými nedostatky. Například špatná reprezentace některých skupin v původních datech povede k jejich nedostatečnému zastoupení i v syntetických datech. Studie z roku 2023 ukázala, že přílišné spoléhání na syntetická data může vést ke zhoršování kvality modelů. S každou další generací tréninku na syntetických datech se modely stávají méně rozmanitými a jejich schopnost přesně reagovat na složitější podněty klesá. Dalším rizikem je tzv. halucinace modelů – situace, kdy model generuje zcela nepravdivé nebo nesmyslné informace. Tyto chyby se mohou stát součástí syntetických dat a dále ovlivňovat kvalitu trénovaných modelů. Budoucnost syntetických dat Přestože syntetická data přinášejí mnoho výhod, stále nejsou schopna zcela nahradit data reálná. Nejlepší výsledky zatím přináší kombinace obou přístupů, kdy syntetická data doplňují tréninkové sady obsahující reálná data. Tento přístup umožňuje dosáhnout vyšší rozmanitosti i přesnosti modelů. Zdroj: Getty images Ačkoli někteří odborníci předpovídají, že syntetická data se jednou stanou hlavním zdrojem pro trénink AI, tato technologie zatím nedosáhla potřebné úrovně. Vývojáři budou muset pokračovat v hledání rovnováhy mezi využíváním syntetických dat a spolehnutím se na lidský dohled a reálné zdroje. Syntetická data představují slibnou cestu pro budoucí vývoj umělé inteligence. Nabízejí řešení problémů spojených s nedostatkem reálných dat, snižují náklady a urychlují proces tréninku. Současně však přinášejí rizika, která je třeba pečlivě zvažovat. Aby se vývojáři vyhnuli problémům, musí syntetická data důkladně kontrolovat a doplňovat je daty z reálného světa. Tato kombinace zajistí, že modely AI budou schopny nejen přesně reagovat, ale také se adaptovat na komplexní a měnící se podmínky. V konečném důsledku tak syntetická data mohou hrát klíčovou roli při formování budoucnosti umělé inteligence.
Tagy: AIbudoucnostdatasyntetická data


    Chcete využít této příležitosti?


    Zanechte své kontaktní údaje, ozve se Vám licencovaný specialista a zároveň získáte:

    • Přístup k nejžhavějším IPO a investičním trendům.

    • Pravidelnou dávku aktuálních tipů pro Vaše portfolio v našem Newsletteru.

    • Investiční portfolio

    Máte zkušenosti s investováním?

    Jakou částku jste připraven použít na investování?



    Odesláním formuláře souhlasíte se zasíláním newsletteru Burzovní svět. Odhlásit se můžete kdykoli.

    Advertisement

    Breaking.

    00:42

    Southwest Airlines po 60 letech končí s volným výběrem sedadel

    00:07

    Amazon se dohodl na miliardovém vyrovnání kvůli problémům s vracením peněz zákazníkům

    23:32

    Strategy drží Bitcoin za 63 miliard dolarů: Přehled rekordních nákupů

    23:03

    Starbucks ruší limit pro soukromé lety generálního ředitele z bezpečnostních důvodů

    22:22

    F5 Networks výrazně překonala odhady zisku i tržeb za první čtvrtletí

    21:48

    Nike propustí stovky zaměstnanců v amerických distribučních centrech kvůli automatizaci

    Advertisement

    Příležitosti.

    Zdroj: CoreWeave
    Akcie

    CoreWeave získává podporu od Deutsche Bank po investici společnosti Nvidia

    27 ledna, 2026

    Akcie společnosti CoreWeave se dostaly do centra pozornosti investorů poté, co analytici z Deutsche Bank zvýšili své hodnocení titulu v...

    Zdroj: Burzovní svět

    IPO Forgent Power Solutions otevírá investorům cestu k energetice

    27 ledna, 2026
    Zdroj: Getty Images

    Zoom prudce stoupá. Investice do společnosti Anthropic je „skrytým pokladem“

    27 ledna, 2026
    Zdroj: Dutch Bros

    Síla značky Dutch Bros vytváří podmínky pro růst kávového řetězce

    27 ledna, 2026
    Zdroj: Getty Images

    Apple získává vyšší ocenění od JPMorgan díky silné poptávce po iPhonech

    27 ledna, 2026

    IPO Radar.

    York Space Systems Inc.

    Datum IPO: 29 ledna, 2026
    Potenciální ocenění: 4,25 miliardy USD

    Buďte u toho

    Nejčtenější zprávy.

    Zlato prolomilo hranici 5 000 dolarů, stříbro a platina následují v prudkém růstu

    26 ledna, 2026

    Proč AMD získává důvěru investorů, zatímco Intel ztrácí půdu pod nohama

    25 ledna, 2026

    S&P 500 zaznamenal druhý týdenní pokles pod tlakem Intelu a geopolitického napětí

    23 ledna, 2026

    Blížící se nadbytek LNG na trhu: Co to znamená pro globální ceny energií?

    25 ledna, 2026

    Raketový růst stříbra kopíruje altcoinovou sezónu, tvrdí experti z Bitwise

    23 ledna, 2026

    Americké akcie uzavřely výše v očekávání výsledků technologických gigantů

    26 ledna, 2026

    Stříbro jako „zlato na steroidech“: Investoři mu aktuálně dávají přednost i před umělou inteligencí

    27 ledna, 2026

    Proč ani pozitivní signály z Číny zatím nepřinášejí akciím Nvidie výraznější růst

    24 ledna, 2026
    Advertisement

    Tip editora.

    Zdroj: Getty images
    AI

    CEO Uberu radí investorům, jak rozeznat skutečné vítěze v oblasti umělé inteligence

    21 ledna, 2026

    Debata o umělé inteligenci se rychle přesouvá z roviny technologického nadšení do roviny tvrdé ekonomické reality.

    Advertisement

    Veškeré materiály a informace umístěné na internetových stránkách Burzovního Světa jsou čerpány z veřejně dostupných zdrojů, jako napriklad tyto a slouží výhradně pro informační účely. Při jejich tvorbě bylo postupováno s vynaložením maximální péče. Informace uveřejněné na internetových stránkách Burzovní Svět nemají charakter právních, daňových či jiného doporučení, analýz nebo návrhů a nabídek ke koupi či prodeji investičních nástrojů, jejichž realizací může dojít k poklesu či ztrátě investovaného majetku. Investiční doporučení, která jsou takto označena, jsou pouze informativní a nezávazná. Burzovní Svět neodpovídá za jakoukoli případnou škodu, která v souvislosti s nimi vznikne. Pro obchodování s investičními nástroji proto využívejte výhradně společnosti s udělenou licencí ČNB, popřípadě s platným povolením k činnosti na území České Republiky.

    Burzovní Svět zároveň prohlašuje, že neodpovídá za přímou i nepřímou škodu vzniklou v důsledku obchodování na kapitálových trzích všeobecně a příspěvky v diskusích vyjadřující názory čtenářů, nemusí být v souladu s postojem provozovatele a není možno je tím pádem považovat za jeho názory. Udělením souhlasu / přijetím podmínek zároveň souhlasíte s možností zasílání, či jiného kontaktování v rámci marketingových služeb obchodních partnerů Burzovního Světa. Více informací o cookies

    • Zásady ochrany osobních údajů a cookies
    • Reklama
    • Kontakt

    Burzovnisvet.cz © 2026

    Burzovnisvet.cz © 2026

    Název nebo symbol
    Žádný výsledek
    Zobrazit všechny výsledky
    • Burzy
      • Headlines
      • Breaking
      • Akcie
      • ETF
      • Dividendy
      • IPO
      • Forex
      • Komodity
      • Kryptoměny
      • Ekonomika
      • Hospodářské výsledky
    • Příležitost
    • IPO Radar
    • Nejčtenější
    • Bullionář Daily
    • Úspěch
      • Alternativní investice
      • Škola bullionáře
      • Miliardáři
      • Business
      • Bullionářova knihspirace
      • Bullionářův almanach
      • Bullionářův slovníček
    • AI
    • Česko
    • Invest mentoring
    • E-booky
    • Srovnávač brokerů
    • Kariéra
    • Pomoc investorům
    Odebírat Ranního Bullionáře Podcast

    Retrieve your password

    Please enter your username or email address to reset your password.

    ·
    Poslední událost
    Poslední událost
      Kontaktujte nás
      News Watchlist Markets Media Nastavení

      Používáme soubory cookie a podobné technologie, které jsou nezbytné pro provoz webových stránek. Další soubory cookie se používají k provádění analýzy používání webových stránek. Pokračováním v používání našich webových stránek vyjadřujete souhlas s používáním souborů cookie. Další informace naleznete v našich Zásadách ochrany osobních údajů.